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Management Summary

How can a combination of data spaces and foundation models enable high-quality
artificial intelligence — and who benefits from it?

Artificial intelligence (Al) is becoming a key driver of competitiveness across industries, enabling
companies in manufacturing, finance, healthcare and other sectors to streamline operations,
improve decision-making and create new business models. However, the effectiveness of Al
depends on access to high-quality, industry-specific data — a challenge as most Al models,
including foundation models, are primarily trained on public internet data. Regulatory require-
ments such as the EU Al Act further complicate the landscape, demanding transparency and
compliance in Al-driven decision-making.

Despite their capabilities, foundation models face significant limitations due to their reliance on
unstructured, publicly available data. Many lack industry-specific knowledge, struggle with data
quality and bias, and create compliance risks due to unclear data sources. Current solutions, such
as custom Al training, are often costly, time-consuming, and limited by a lack of access to real-
world company data. As a result, businesses that rely solely on off-the-shelf Al models risk losing
their competitive advantage, facing legal challenges, and suffering from operational inefficiencies
due to inaccurate or outdated Al-generated insights.

To fully harness the potential of Al while ensuring data security, sovereignty, and compliance,
companies need a trusted infrastructure for controlled data exchange. Data spaces provide a
solution by enabling secure and standardized data sharing, allowing organizations to retain full
control over their proprietary information while making it accessible for Al-driven innovation.
By integrating data spaces with foundation models, businesses can unlock new opportunities,
ensure regulatory compliance, and enhance Al performance. This white paper explores prac-
tical approaches such as retrieval-augmented generation (RAG) and fine-tuning, which allow
Al models to incorporate trusted, industry-specific knowledge, making them more reliable and
effective for real-world applications.
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1. The Data and Al Value Chain

Data is of critical value to industry and businesses, serving as a strategic organizational resource
that can enable informed decision-making and data-driven innovation. Data can increase oper-
ational efficiency, unveil market trends and insights, and lead to better customer experience, to
name just a few benefits. This is new to many traditional companies, which are confronted with
a fundamental change as the delivery of data-driven services and products becomes increas-
ingly important’. Companies that can effectively leverage data resources and have robust data
management practices in place are better positioned to gain competitive advantages and ensure
sustainable growth?.

Artificial Intelligence (Al) has found its way into the corporate landscape with the introduction of
ChatGPT in particular and is one of the megatrends of this decade®. Al describes all efforts to imi-
tate a machine’s ability to perform human skills, such as logical thinking, learning, planning and
creativity, and can be divided into various sub-areas including machine learning, deep learning,
natural language processing and knowledge representation®. Al offers great potential for realizing
cost savings® and productivity improvements, thereby becoming a major source of competitive
advantage®.

All of these tasks require several key resources. First, Al needs high-quality, well-managed data,
or as summarized by Groger (2021): “There is no Al without data””. Second, Al needs IT resourc-
es, such as computing powers and intelligent algorithms, which also requires the right talents.
Third, Al needs funding and energy to promote the development of Al solutions.

Yet, Europe is currently not leading in the relevant domains, and Al resources (data, talent, etc.)
are highly distributed. To leverage these benefits of Al and increase global competitiveness, Euro-
pean organizations must spur Al innovation and develop a vision for trustworthy and sustainable
Al. In light of this, it is most important that organizations utilize their “data treasure,” which
holds enormous potential for industrial Al applications and foundation models. Data spaces offer
one way to use the private data held by organizations. This white paper examines how integrat-
ing data spaces with foundation models can enhance Al efficiency.



2. Related Work

2.1. Introduction to Al and Foundation Models

The proliferation of Al is based on the success of foundation models (FMs). FMs are large neural
deep learning networks that have changed the approach to Al. They are Al models designed to
produce a wide and general variety of outputs and are capable of a range of possible genera-
tive tasks and applications, such as text, image, and audio generation. Because FMs have been
trained on many datasets for an array of application scenarios, they can be adapted to specific
applications. As a result, existing FMs are accessed and adjustments are made instead of develop-
ing Al from scratch, which reduces a significant amount of the Al development effort®.

As a subcategory of FMs, large language models (LLMs) are based on large text bodies and are
used to generate texts. They can be standalone systems or can be used as a “base” for many
other applications. Prominent examples of LLMs are OpenAl’s GPT®, Google's Gemini'®, Meta’s
LLaMA" series, and Teuken 7B™ as a European alternative. Despite all the advantages of LLMs,
there are currently inherent limitations to them, particularly when working with specific, up-to-
date, or specialized information, but efforts are being made to overcome these limitations.

Specifically, two key techniques to enhance FMs and address these limitations are retrieval-aug-
mented generation (RAG) and fine-tuning. Each of these methods offers distinct advantages
and use cases, allowing FMs to be tailored to various applications while improving accuracy,
relevance, and efficiency™.

FMs are trained on a vast amount of data. The relevant units are tokens, into which the train-

ing data is converted. For text data, tokens are individual elements such as words, punctuation
marks, or subwords. Tokenizers from established natural language processing (NLP) tools support
this task™. GPT-3, for example, was trained on an estimated 45TB'® of text data or approximately
499 billion tokens. The figures for GPT-4 are not publicly known but are estimated to be much
higher. Meta’s largest model, LLaMA 3.1 405B, which has capabilities comparable to GPT-4, was
trained on 15 trillion tokens. Nowadays, not only is text data tokenized, but image and sound
data as well, leading to what are called “multimodal models”.

All of these models are based on the transformer architecture'®. A transformer works like this:
First, the input tokens (for example, the question of the user plus context) are converted into
numerical vectors called embeddings, which encode semantic and contextual information of the
input. The transformer then tries to predict the next token based on the input data. A key com-
ponent here is the attention mechanism, which evaluates which parts of the input data are rele-
vant for the prediction of the next token. This attention is learned in the training process. Finally,
the transformer predicts which token is the most likely to follow that specific sequence of tokens.



Researchers found that if models are trained with more tokens and have more parameters, they
become much better at predicting the next token. In terms of making better predictions, there

is an emergent ability to capture broader concepts that surpass mere modeling of just words or
grammar. At this stage, the models are very good at predicting the next token, but they are not
always as usable. For example, if you give them a question, it might happen that the most likely
continuation of this sequence is more questions. For this reason, most models additionally go
through a step called reinforcement learning from human feedback (RLHF)". In RLHF, the outputs
of the model are evaluated by humans, and the feedback is used to fine-tune the models, so they
give responses that more closely align with human preferences. FMs are typically saved in a seri-
alized format (e.g., HDF5, GGML) that allows them to be efficiently loaded and used for inference

or further training.

Gathering the large amounts of data necessary for creating FMs can be problematic. Currently,
commercial models are largely based on data gathered from the internet using web crawlers®.
This approach comes with several problems, such as a lack of data quality and unclear legal
frameworks'. The following table summarizes the challenges that FMs currently face.

Challenges

Unclear legal framework

Emerging “data winter”

Unreliability and bias

Industry-specific data

Data quality

Adaptability

High computational costs

Hallucinations

Description

Companies face problems in gathering huge amounts of training data in a legally compliant way.
Current models use publicly available data (e.g., texts, images) as a basis for training. The EU Al Act,
which comes into effect in Q2 2026, mandates transparency over Al systems and the data used for
training.

The MIT Data Provenance Initiative found that data availability is drying up due to data providers
blocking web crawlers or setting up paywalls. As a result, around 5% of the data used in C4 (Colossal
Clean Crawled Corpus) is no longer available.

Bias is a distinct possibility as models can pick up false information, hate speech and inappropriate
undertones from training datasets.

FMs neglect industry-specific data such as machine data or high-quality texts. Leveraging indus-
try-specific data for the training of FMs can help provide reliable answers.

The quality of the training data may vary, which can affect the reliability of the results.

Adapting models to specific applications or domains can be time-consuming and complex.

LLMs have a fixed knowledge cutoff, limited to the data they were trained on up to a specific point.
This makes it challenging for them to handle queries related to later events or insights discovered
after their training period. LLMs are designed to be versatile, but this generality means they may not
perform optimally in highly specialized domains without further adjustment.

Training large models requires significant computational resources and energy.

LLMs might generate inaccurate or fabricated information, often referred to as hallucinations as they
focus on ongoing conversations rather than correct information.

Table 1. Summary of Challenges of Foundation Models



2.2. Applications of Al and Foundation Models
in the Industrial Context

With their ability to process large volumes of data and learn from complex patterns, Al,
particularly foundation models (FMs), is driving significant innovation and optimization across
various industries. In sectors like manufacturing, logistics, and maintenance, Al and FMs present
numerous opportunities for process improvement and the creation of new business models.

In industrial practice, various types of Al applications can be identified.

The following outlines five key types of Al applications:

1. Use of Al-based digital services

Industrial enterprises consume digital or smart services offered by external software vendors
that leverage Al. Examples include Al-enhanced sensor services for monitoring equipment and
estimated time of arrival (ETA) predictions in logistics.

2. Use of conventional Al for own digital services

Companies use their own or customer data to develop digital services for their clients. Examples
include predictive maintenance and condition monitoring, where data generated during product
use enables tailored solutions.

3. Use of foundation models by industrial enterprises

FMs find applications in “white-collar” domains, such as creating reports, supporting deci-
sion-making, or automating routine administrative tasks. These tasks leverage the capabilities of
LLMs to streamline processes and enhance efficiency.

4. Enrichment of foundation models by industrial enterprises

By integrating private, enterprise-specific data with generative Al using techniques like retriev-
al-augmented generation (RAG), companies can significantly enhance the relevance and perfor-
mance of LLMs. This approach allows enterprises to derive greater value from their proprietary
data.

5. Shared industrial foundation models/LLMs

Collaboration between multiple organizations to jointly develop and fine-tune foundation
models (FMs) or large language models (LLMs) represents a promising, yet underutilized,
approach. Sharing data to train a shared model can unlock the potential of data collaboration,
but it requires trust, data sovereignty, and appropriate tools to ensure compliance and mutual
benefits.

As highlighted, successful implementation of Al and FMs in industry depends on access to
high-quality, comprehensive datasets. This is where data spaces become essential. They play

a crucial role in facilitating the secure and efficient exchange of data across multiple stakeholders
and sectors, enabling organizations to share and link data while maintaining control and minimiz-
ing security risks, as further discussed in the next chapter.



2.3. Data Spaces

Data spaces are a new concept aimed at facilitating the secure, trustworthy, and efficient
exchange of data between different organizations?°. Innovation in the form of new products and
services is often driven by data shared between individuals and organizations. In this sense, data
spaces represent the “motor” of data ecosystems, which act as a key enabler for the transforma-
tion of whole industries towards an integrated digital economy?'. The concrete business value of
a data space lies in the standardization of the data exchange infrastructure, including standardiz-
ing interfaces and information models.

CEN CENELEC defines a data space as an “interoperable framework, based on common gover-
nance principles, standards, practices and enabling services, that enables trusted data transac-
tions between participants.”??

Using the definition, there are multiple key features relevant to data spaces?:

= Interoperability & standards: Interoperability in data spaces refers to the ability of different
systems, platforms, and applications to communicate and exchange data. It is crucial to ensure
that data can be utilized across various technologies and organizational boundaries, signifi-
cantly simplifying interorganizational collaboration. A key element for realizing interoperability
is the IDSA Dataspace Protocol?*. This protocol defines the required schemas and interactions
for cataloging data as well as negotiating contracts and usage agreements within a data
space.

= Trust & data sovereignty: Data sovereignty means that data owners retain full control over
their data when sharing data with external data consumers. Data sovereignty is achieved
through clear access rights, data protection policies, and the ability to encrypt data. Open-
source implementations such as the Eclipse Data Space Components (EDC)* framework imple-
ment data sovereignty concepts using common access patterns and data protection standards.
To further improve trust in data spaces, Gaia-X?* offers a reference architecture for federated
and trusted data sharing using components such as the Digital Clearing House.

= Governance: Governance in data spaces involves establishing clear rules, guidelines, and
procedures for data exchange and collaboration between participating parties. This aspect
includes defining roles and responsibilities, complying with legal and regulatory requirements
(e.g., EU Data Act), and setting standards and establishing processes for secure data handling.
A well-defined governance framework is essential to ensure seamless data sharing and interor-
ganizational collaboration.

= Flexibility: Flexibility is at the heart of data spaces and aims to accommodate a wide variety
of different data sources and types, including structured and unstructured data. This flexibility
enables the adoption of data space technologies to different industries and use cases, whether
in mobility, healthcare, or logistics. As a result, companies can integrate data from diverse
sources to create comprehensive data products and implement use cases across domains.

The fact that data spaces enable trustworthy data sharing between different organizations makes
them valuable for Al and FMs. The following section delves into the potential combination of the
two concepts and describes the benefits and architectures for integration.



3. Data Spaces and Foundation Models

3.1. The Contribution of Data Spaces

Data spaces provide a controlled environment where data can be shared in a secure and stan-
dardized manner without creating centralized data silos. At the same time, data spaces ensure
data sovereignty, which means that each participant remains in control of their data products. As
a result, data spaces create trust in data exchanges and help facilitate data sharing between com-
panies and organizations. Consequently, data spaces can serve as a valuable component
in the FM architecture by providing secure access to reliable, high-quality, and privately
owned data sets.

The benefits of data spaces for FMs can be summarized as follows:

= Data sovereignty: Data spaces ensure that data owners maintain control over their data
while providing the necessary information to train or aid the FMs with additional context
information.

= Improved data quality: Through standardized processes within data spaces, only verified
and quality-assured data is used in the models, leading to more accurate results.

= Access to private data sets: Data spaces can provide access to privately owned data sources
(e.g., corporate data), offering FMs a broader knowledge base and improving their generative
capabilities (including context-specific data, for example).

= Collaboration and interoperability: Data spaces facilitate the secure and efficient data
exchange between different organizations, fostering collaboration and innovation in FM
development.

= Regulatory compliance: Data spaces provide the necessary infrastructure to ensure that the
data exchange complies with strict privacy regulations and legal frameworks.

3.2. Integrating Data Spaces and Foundation Models

Over time, FMs and LLMs have significantly increased in their capabilities, yet they predominantly
leverage general knowledge. Contextual knowledge embedded in companies remains largely
unused. Data spaces can help leverage these data sets and support the enrichment of estab-
lishment models or the collaborative development of FMs and LLMs (see categories 4 and 5 in
Section 2.2).

Traditional methods of interacting with LLMs involve direct prompting. Users send a query, and
the LLM generates a response based on the information encoded in its weights and the context
provided within the prompt. This approach, while straightforward, is limited by the extent of the
context knowledge inherent in the prompt and the LLM’s weights.

There are two methods for addressing these limitations: retrieval-augmented generation (RAG)
and fine-tuning. Both methods are intended to enhance the reliability and accuracy of FMs with-
out re-training the model itself. They both represent examples of category 4 in Section 2.2. These
two methods are described further below.



3.2.1. Retrieval-Augmented Generation (RAG)

The retrieval-augmented generation (RAG) method can enrich the prompt with additional con-
text information from internal company data and other sources. In the simplest form of RAG, a
middle component vectorizes the user’s prompt and compares it with vectorized data from the
company’s knowledge base. The most relevant matches are then added to the prompt, which
is forwarded to the LLM. This augmented prompt allows the LLM to generate a response that is
better informed by the specific context of the company’s internal knowledge?’.
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Figure 1: RAG workflow illustrates the process of augmenting prompts with external context.
The RAG process works in several stages:

= Data provision and transformation: First, external data that exists outside of the LLM’s
original training set is collected from a variety of sources such as documents (PDFs, DOCX,
PPTX), wikis/intranets, corporate websites, knowledge graphs, and relational databases (e.g.,
SQL, PostgreSQL). It is converted into vector representations using embedding techniques such
as Word2Vec?® or BERT??, These vectors are numerical representations of the data that are
stored in the knowledge repository 1) for future retrieval®®. User query: The process begins
when the user submits a prompt or question/query 2). This prompt is also transformed into
a vector representation using the same embedding techniques (e.g., Word2Vec or BERT) to
ensure that it can be effectively compared with the data stored in the knowledge repository.

= Searching contexts: Once the user’s query is vectorized, a retrieval system (e.g., Pinecone®'
or FAISS??) compares the query’s vector representation to the vectors stored in the knowledge
repository 3).

= Retrieving contexts: The system identifies the most relevant contexts by calculating vector
similarities, retrieving the pieces of data that are most closely aligned with the user’s query®
4).

= Contextualizing the prompt: The retrieved contexts are combined with the original user
prompt, thus augmenting the initial query with additional relevant information 5.1), 5.2). The
prompt and contexts combination is then sent to the LLM.

= Generating the final answer: Finally, the LLM generates a response based on the augment-
ed prompt, which is more accurate and contextually appropriate 6).



= Building on the concept of RAG, we can use an entire data space to enhance contextual
knowledge. When a company sends a query, it is not only matched against its internal data
but also against data available within the data space. Other companies can provide match
scores for relevant knowledge, which the querying company can then decide to incorporate.
If considered valuable, the additional knowledge is requested and used to further augment
the prompt, leading to a more grounded response. The hypothesis is that the more context
knowledge an LLM has access to, the higher the utility of its responses. This approach not only
addresses the inherent limitations of current models but also opens new avenues for gener-
ating more accurate and contextually aware responses. The workflow of the data-space-aug-
mented RAG is illustrated in Figure 2 below.
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Figure 2. Data-space-augmented RAG workflow illustrates the process of augmenting prompts
with context from a data space.

The data-space-augmented RAG process has some additional stages:

= Data provision and transformation: As with classical RAG, in the first step, external data
that exists outside of the LLM'’s original training set is collected from a variety of sources. It
is converted into vector representations. These representations are stored in the knowledge
repository for future retrieval®® 1.1) This is not only done by one company but by multiple data
space participants 1.2), each populating their own knowledge repository.

m User query: If the user now submits a prompt 2), the prompt is transformed into a vector
representation.

= Searching contexts: Once the user’s prompt is vectorized, a retrieval system compares the
query’s vector representation to the vectors stored in the knowledge repository 3.1). Addi-
tionally, the query is sent to the data space to find participants who also have relevant context
information. They each take the query and compare it to their knowledge repositories 3.2).

= Evaluate data space results: If relevant context information is found in the data space, the
metadata of the found context information is sent back to the requesting company. This meta-
data includes a score on how well the found context fits to the query 4).

= Requesting data space results: The requesting company can select and request the context
data that it would like to use 5).

= Retrieving contexts: The system identifies the most relevant contexts inside its internal



knowledge repository 6.1) while also considering the requested context from the data space
6.2).

= Contextualizing the prompt: From this step on, the process is the same as for the classical
RAG: The retrieved contexts are combined with the original user prompt 7.1), 7.2).

= Generating the final answer: Finally, the LLM uses both its internal knowledge and the
externally retrieved data (This time including context from the data space) to provide a final
answer to the user’s query, which is more accurate and contextually appropriate 8).

However, RAG has certain limitations. A key limitation is the LLM’s context window, which
defines the maximum amount of information the model can handle at any one time*>. Even if
RAG retrieves large amounts of relevant data, only some of it can be fed into the model if the
context window is small. In addition, context management becomes critical in RAG, as overload-
ing the context window with excessive information could degrade the quality of the response.
This requires careful selection of the most relevant information to include in the query.

Another key consideration is keeping external data up to date. As data evolves, documents need
to be updated asynchronously, and their embedding representations refreshed to ensure accurate
retrieval. This can be achieved through automated real-time processes or regular batch updates.
Addressing data freshness is a common challenge in data analytics, and various data science
change management techniques can be effectively applied.

Despite these limitations, RAG offers significant advantages. It excels in scenarios where dynam-
ic, up-to-date data is required, such as when an LLM is asked about recent developments in an
industry or about events. Furthermore, by providing sources for the retrieved data, RAG increas-
es the transparency of the model’s output, which is valuable in applications where trust and
verification are critical. Moreover, since RAG relies on external information to augment the LLM's
responses, there is no need to retrain the model, which can be resource intensive.

RAG has a wide range of use cases, including customer support chatbots that need to be
constantly updated with the latest product documentation, financial news services that provide
real-time market updates and insights, and research assistance tools that can provide relevant
academic papers or technical documents to support queries.

3.2.2. Fine-Tuning

Fine-tuning involves retraining an LLM on a smaller, specialized dataset to optimize it for a partic-
ular domain, task, or style. During this process, the model’s weights are adjusted to incorporate
new patterns, language, or tone specific to the dataset, making it more adept at handling queries
in a particular context3®. The fine-tuning process is illustrated in Figure 3 below.
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Figure 3. The fine-tuning process, where unstructured data from a data space is used to further
train a pre-trained LLM, enabling it to generate more specialized responses.



The fine-tuning process begins with the selection of a domain-specific dataset tailored to a par-
ticular industry or task. This dataset could include legal documents, financial reports, or medical
case studies. The data is first passed through a data space, where it is cataloged, negotiated and
transferred from a domain-expert data provider or other data sources. Once this data has been
collected, the pre-trained LLM uses it to undergo further fine-tuning, allowing the model to learn
the specific nuances of the targeted domain?’. After fine-tuning, the model, now referred to as

a fine-tuned LLM, generates responses that match the vocabulary, tone, and structure of the
domain.

Fine-tuning has several advantages. It allows the model to behave like an expert in a particular
domain, providing specialized responses with the correct terminology and tone. This makes the
model particularly valuable in industries such as law, where it can summarize contracts or provide
legal insights. In addition, fine-tuning can improve the speed and efficiency of the model by
optimizing it for specific tasks, allowing it to generate more concise and relevant responses even
with smaller context windows. This reduces computational and inference costs®®. Fine-tuning also

enables the model to adopt specific communication styles, so that responses can be tailored to
reflect an organization’s brand voice for more personalized output.

There are many use cases for fine-tuning. For example, fine-tuned LLMs can be used as legal
document summarizers, providing accurate, domain-specific summaries of complex legal texts. In
customer service, fine-tuned models can adopt a company’s tone and style to provide consistent
responses, and in industry-specific research, fine-tuned LLMs can generate technical summaries
or insights relevant to fields such as finance, healthcare, or education.

3.2.3. Combining RAG and Fine-Tuning

Both RAG and fine-tuning have advantages and disadvantages. The following table compares
and summarizes the two concepts:

Features

Data Requirements
Response Accuracy
Context Limit
Hallucination Risk

Adaptability

Transparency

Cost & Speed

RAG

Ideal for real-time data from dynamic sources
Improves accuracy by pulling in external information
Limited by the model’s context window

Reduced by providing relevant source information
Quick to adapt to new information without retraining

Can provide sources for the information used in
responses

May have higher compute costs due to external data
retrieval

Table 2. Comparison of RAG and Fine-Tuning.

Fine-Tuning

Works best with static or domain-specific data
Highly accurate for specialized, predefined tasks

Not constrained by the context window once trained
Low, but limited to the dataset it was trained on
Requires retraining to adapt to new data

Responses are embedded into the model, without
external citations

More efficient during inference as the model is already
fine-tuned



For many real-world applications, a hybrid approach combining RAG and fine-tuning offers a
powerful solution that leverages the strengths of both methods. Fine-tuning allows a model to be
highly specialized in a particular domain, ensuring that it adopts the correct language, terminol-
ogy, and style. At the same time, RAG complements this specialization by enabling the model to
access up-to-date external information, especially in rapidly changing environments.

Users of such combined systems have the advantage of leveraging three levels of knowledge:
(1) the general knowledge provided by the foundation model, (2) the companies’ inherent
domain-specific knowledge inserted through fine-tuning, and (3) the latest and current knowl-
edge inserted at response time through RAG. This dual approach is particularly effective in
dynamic industries where accuracy and real-time data are critical.

One example: financial news service

Fine-tuning: The model is fine-tuned using financial terminology, historical market data and
industry-specific reports. This enables the model to understand complex financial terms and gen-
erate summaries or insights with a high degree of accuracy. To achieve the best results, the model
should gain access to private financial data using data space, which makes the inherent wisdom
of an organization available to the Al model. The fine-tuned model can then be used by employ-
ees or customers and better utilize the company’s knowledge.

RAG: At the same time, the model uses RAG to retrieve the latest financial news, stock prices
and real-time market updates. This ensures that the model’s responses are both relevant and
timely, reflecting current market conditions and trends. A user who is prompting the model can
thus make informed decisions and be sure that the model takes the latest developments into
consideration.

This combination of RAG and fine-tuning creates a versatile and robust Al system that balances
domain-specific expertise with the ability to incorporate real-time, dynamic information. Such a
hybrid approach is ideal for building specialized Al applications in areas such as finance, health-
care, law, and customer service, where both accuracy and up-to-date information are critical to
success.



3.3. The Contribution of Data Trustees

Data trustees play a key role in ensuring that sensitive and personal data can be accessed in a
secure and ethical manner for the development of FMs. As neutral intermediaries, they provide
an essential layer of trust and compliance, which is critical in an era of growing privacy concerns.
By facilitating the controlled exchange of data, data trustees help to address some of the key
challenges facing FMs today (see ,,3.1. The Contribution of Data Spaces” on page 9).

Data trustees provide secure and controlled access to data. They act as intermediaries, ensuring
that data is only accessed and used under strictly regulated conditions®®, particularly when
training the FMs. This is especially important when dealing with sensitive or personal
data, where privacy must be carefully managed. By establishing clear access controls,
data trustees protect the integrity of the data and allow the FMs to use it without com-
promising security or violating privacy laws.

Data Provider |:> Data Trustee I::} Secured / Privacy-enhanced Data :> RAG-enhanced / Fine-tuned FM

Figure 4. lllustration of the process by which data flows from the data provider to the data trust-
ee, who ensures the secure and ethical handling of sensitive data before it is used in the develop-
ment of an RAG-enhanced or fine-tuned FM.

Another important role of data trustees is to ensure privacy and compliance. With strict regula-
tions such as the GDPR governing the use of personal data*°, compliance is paramount for FMs.
Data trustees make sure that all data handling adheres to these legal frameworks, for example
by providing centralized data anonymization. This ensures that personal data used to train FMs is
handled ethically and legally, reducing risk for both data providers and model developers.

By acting as neutral intermediaries, data trustees increase trust between data owners. One of the
major barriers to sharing high-quality data for FM training is the lack of trust between parties.
Data owners are often reluctant to share valuable or sensitive data due to concerns about misuse
or lack of control. Data trustees alleviate these concerns by managing data in a transparent and
secure manner¥, giving data owners the confidence to contribute to FM training. This leads to
richer and more diverse datasets that improve the quality and robustness of FMs. They also pro-
mote ethical and transparent development of FMs. By overseeing the data exchange process, they
ensure that all steps are transparent and accountable, allowing data owners to understand how
their data is being used. This contributes to the development of FMs that are not only technically
proficient, but also ethically responsible. At a time when FMs are being scrutinized for bias and
fairness, data trustees play a key role in ensuring that models are trained on diverse and ethically
sourced data.

In addition to fostering trust, data trustees increase opportunities for collaboration. They provide
a secure infrastructure for data exchange between different organizations, allowing stakeholders
from different industries to work together without compromising data sovereignty. This is partic-
ularly important for industries that require high levels of privacy and security, such as healthcare
and finance. By enabling the secure sharing of data across organizations, data trusts help FMs
access industry-specific data that is often underutilized in FM training. This collaboration fosters
innovation and strengthens the capabilities of FMs, making them more adaptable to specialized
tasks.



4. Using Foundation Models and Data

Spaces in an Industrial Context:
Towards an R&D Agenda

As shown in this paper, the combination of data spaces and FMs offers many options that can
open up new value chains for companies or improve existing ones. However, many aspects have
not yet been fully clarified and need additional elaboration by research and industry. The follow-
ing research questions require further investigation:

What is the added value of extending FMs with data spaces?

Does the use of data spaces in RAG or fine-tuning lead to more accurate answers?

What are potential application scenarios for extended FMs?

What is a reference architecture for integrating data spaces and FMs?

Can data spaces address the current problems of FMs?

How can the accuracy and quality of data from data spaces be measured and guaranteed?
What is the usability (e.g., response time) of FMs extended with data spaces (RAG vs.
fine-tuning)?

What are the most effective methods for determining which information should be included in
the context window of a query in a language model?

Which techniques can be applied to select relevant data from a data space for fine-tuning a
FM?

How to ensure that the data usage policies from data spaces are also adhered to in FMs?

Fraunhofer ISST is committed to transforming research into industrial innovation. Industry leaders
are invited to collaborate on advancing the integration of data spaces and foundation models

to unlock new opportunities, overcome key challenges, and develop cutting-edge, trustworthy
Al solutions. Partnering on this research agenda will ensure sustainable success and measurable
value for all industries.
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